C. Bypasses
let \sum be a convex surface
α a Legendrion arc in Σ that intersects the dividing set Γ_{Σ} (transversely) in 3 points p_{1}, p_{2}, p_{3} with p_{1}, p_{3} end points a bypass for $\sum($ along $\alpha)$ is a disk D st.

1) D convex with Legendrim boundary
2) $D \cap \Sigma=\alpha$ (and intersection transverse)
3) $H(D)=-1$
4) $\partial D=\alpha \cup \beta$
5) $\alpha \cap \beta=p_{1} \cup p_{3}$ are corneas of ∂D and elliptic singularities of D

by Grioux flexibility can assume D_{q} is

C sign of bypass (not really well-defined!)

Th ${ }^{m}$ 5:
Σ convex surface
D a bypass for \sum along α then $\Sigma \cup D$ has a ibid $N=\Sigma \times[0,1]$
s.t. $\Sigma=\sum x\{0\}$ and Γ_{Σ} is related to $\Gamma_{\Sigma \times\{13}$ by

We say $[x\{1]$ is obtained from $[$ by attaching a bypass along α from the front

Remark: if $N=\sum \times[0,1]$ with $\Sigma=\sum x\{1\}$, then we have

and we say $\sum x\{0\}$ is obtained from Σ by attaching a bypass along \sum from the back

Proof: basic idea is to look at I-rivariant ubhd of Σ and D then round corners

flatten picture

round

exercise: carefully work this out
exercise: let Σ^{\prime} be obtained from Σ by a bypass attachment show

$$
X\left(\Sigma_{+}^{\prime}\right)-X\left(\Sigma_{-}^{\prime}\right)=X\left(\Sigma_{t}\right)-X\left(\Sigma_{-}\right)
$$

Th -6 :
let I be a closed convex surface
I' be obtained from Σ by a bypass attachment in a tight contact manifold
Then
(1) $\Gamma_{\Sigma}{ }^{\prime}=\Gamma_{\Sigma}$ "frivíä" "bypass
(2) $\# \Gamma_{\Sigma}=\# \Gamma_{\Sigma}+2$
(3) \# $\Gamma_{\Sigma}=\# \Gamma_{\Sigma}-2$
(4) Γ_{Σ}, is obtained from Γ_{Σ} by a Dehn twist about some curve in Σ
(5) Γ_{Σ} is obtained from Γ_{Σ} by a "mystrey move"
(see figure below)

Proof: consider the points $\left\{p_{1}, p_{2}, p_{3}\right\}=\alpha \cap \Gamma_{\Sigma}$
let γ_{i}. be the dincting curve contacig P_{i}. if none of γ_{i} are save then

If all γ_{i} same then we have

no topology 1) topology cause 4)
 \Rightarrow cause 2) excise

case 2) exercise
no topology case 1) topology case 4) exracise, no topology (case 1) topology case 4)

$$
\Rightarrow
$$ cause 2)

if $\gamma_{1}=\gamma_{3} \neq \gamma_{2}$

case ${ }^{4}$)

-
${ }_{1}+\gamma_{1} \neq \gamma_{3}$ but $\gamma_{2}=\gamma_{1}$ or γ_{2}
erencise: Show you get (1), 4) or 5)
example: S^{2} in a tight contact manifold
all bypass attachments are trivial! since $\Gamma_{s^{2}}$ must be connected
example: T^{2} in a tight contact monifold
bypasses can

1) be mivial
2) micrease $\left|\Gamma_{T^{2}}\right|$ by 2
3) decrease " "
4) perform a right horded Den twist (must have $\left|\Gamma_{\Sigma}\right|=2$ in this case)
note: in case 1), 2) the attaching arc for the bypass has consectutive intersections with a single dividing curve
eg.

When this does not happen we say the bypass intersects the dividing curves efficiently
Th ${ }^{m}$ 7:
let T be a convex torus in a tight contact manifold assume T_{3} is standard with divesting slope ∞ and ruling slope $r \in[-1,0)$ and there is a bypass D attached to front of T along a ruling curve the result of attaching D to T is a convex torus T^{\prime} st.
(1) if $\left|\Gamma_{T}\right|>2$, then $\left|\Gamma_{T^{\prime}}\right|=\mid \Gamma_{T} /-2$
(2) if $\left|\Gamma_{\tau}\right|=2$, then $\left|\Gamma_{\tau^{\prime}}\right|=2$ and slope $\left(\Gamma_{\tau^{\prime}}\right)=-1$
moreover, in case (2) region between τ and T^{\prime} is a basic slice

Proof:
(1) is clear from above
(2)
assume

$$
r \in(-1,0)
$$

Region R between T and T^{\prime} satisfies all properties of a basic slice exept need to see minimally twisting we show this by embedding R is a minimally twisting contact structure
let $\left.\left(T^{2} \times[0,1],\right\}\right)$ be the basic slice constructed in the proof of Lemma 3, so

$$
\begin{aligned}
& \text { slope } \Gamma_{\tau \times\{0\}}=\infty \\
& \text { slope } \Gamma_{\tau \times\{1\}}=-1
\end{aligned}
$$

can arrange $T \times\{0,1\}$ are standard with ruling slope

$$
r=-p / q \in(-1,0)
$$

so curve is $q \lambda+\rho \mu$
note: $|(g \lambda-\rho \mu) \cdot \mu|=9$ so ruling curve on $\left.\tau \times \xi_{0}\right\}$ intersects dividing curves 29 times

$$
|(q \lambda-p \mu) \cdot(\lambda-\mu)|=|p-q|<q \text { since }-p / q \in(-1,0)
$$

thus of A is an annulus is $\tau^{2} \times[0,1]$ with
$2 A$ a rolling curve on $\tau^{2} \times\{0\}$ and one on $\tau^{2} \times\{1\}$ then we can make it convex and Γ_{A} witensect $T^{2} \times\{0\}$ more than $\tau^{2}+\{1\}$
\therefore must see

we can use Giroux flexibility to realize a bypass B on A for $T^{2} \times\{0\}$ now $\left(\tau^{2} \times[0\}\right) \cup B$ has a unbid contactomorphic to R
$\therefore R$ is minimally twisting and hence a basic slice
exreusé: check this carefully might need to consider - it sign of by pass not right erencosé: check $r=-1$ case

Corollary 8:
let T be a convex torus with 2 dividing curves of slopes and ruling slope $r \neq s$
suppose a bypass is attached to the front of T along a ruling cave
let T^{\prime} be the resulting convex torus
T will have dividing slope s^{\prime} where $s^{\prime} \in[s, r]$ is closest point to n with edge to s

If bypass attached to bach of τ then slope of τ^{\prime} is $s^{\prime} \in\left[r_{1} s\right]$ where s^{\prime} dosest point to r with an edge to s

Proof:
by choosing the right basis we can assume $s=\infty$ the $r \in[-1,0]$ case is exactly $T_{i} \frac{m}{} 7$
now suppose $C \in[n, n+1)$ for some $n \in \mathbb{Z}$
there is a change of basis that fixes ∞ and sends n to -1 (of course $n+1$ goes to 0)
in this basis $r \in[-1,0)$
attaching a bypass will result in a convex torus of slope -1
but is old basis this will be n
note: n is the point in $[\infty, r)$ closest to r with an edge to ∞

D. Continued fractions and the Farcy graph recall $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$ denotes

$$
r=a_{0}-\frac{1}{a_{1}-a_{--\frac{1}{a_{n}}}}
$$

and here we have $a_{i} \leq-2$ for $q>0$
Set $r^{a}=\left[a_{0} ; a_{1}, \ldots, a_{n-1}\right]$ anticlockwise of r $r^{c}=\left[a_{0} ; a_{1}, \ldots, a_{n}+1\right] \quad$ clockwise of r where $\left[a_{j} a_{1}, \ldots, a_{k},-1\right]=\left[a_{0} ; a_{1}, \ldots, a_{k}+1\right]$
example:

$$
\begin{aligned}
& -\frac{13}{8}=[-2,-3,-3] \\
& \text { so }\left(-\frac{13}{8}\right)^{9}=[-2,-3]=\frac{-5}{3} \\
& \left(-\frac{13}{8}\right)^{c}=[-2,-3,-2]=\frac{-8}{5} \\
& \\
& -1 \\
& r^{c}=-\frac{2}{2} \\
& r
\end{aligned}
$$

exercise: compute continued fractions of r and
compute r^{a}, r^{c} for $r=-11 / 5,-11 / 9,-7 / 2,13 / 49$
lemma?
suppose r is not a non-negative integer
the number r^{\prime} is the largest rational number bigger than r with an edge to r
the number r^{a} is the smallest rational number less than r with an edge to r
there is an edge between r^{a} and n^{c} and if $r^{a}=\frac{\rho^{a}}{q^{a}}$ and $r^{c}=\frac{p^{c}}{q^{c}}$ then $r=\frac{p^{a}+p^{c}}{q^{a}+q^{c}}$
If r is a positive integer then $r^{c}=\infty, r^{9}=r-1$
before proving lemma we give a few exercises
exercise:
Suppose $\frac{p}{q}, \frac{r}{s} \neq 0, \infty$
Show $\frac{p}{q} \cdot \frac{r}{s}=q r-p s=-1 \Longleftrightarrow \frac{f}{q}$ and $\frac{n}{s}$ connected by an edge and $\frac{p}{9}$ is clockwise of $\frac{n}{s}$
here we mean if you look at shortest arc t, \hat{s} break ∂D^{2} into, then a lory this arc $\frac{a}{a}$ clochuise of $\frac{x}{5}$
and $\quad \frac{p}{q} \cdot \frac{r}{s}=1 \Leftrightarrow \frac{p}{9} \frac{r}{s}$ connected by an edge and $\frac{p}{q}$ is anticlockwise of $\frac{f}{s}$
errencise: given $r=\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$
let $\frac{P_{k}}{q_{k}}=\left[a_{0} ; a_{1}, \ldots, a_{k}\right]$ for $k=0, \ldots, 1$
and $p_{-1}=1, p_{-2}=0, q_{-1}=0$ and $q_{-2}=1$
Show

$$
\begin{aligned}
& p_{k+1}=q_{k+1} p_{k}-p_{k-1} \\
& q_{k+1}=q_{k+1} q_{k}-q_{k-1}
\end{aligned}
$$

exercise:
if $\frac{p}{q_{1}} \frac{p}{q^{\prime}}$ satisfy $\frac{p}{q} \cdot \frac{p^{\prime}}{q^{\prime}}=p^{\prime} q-p q^{\prime}= \pm 1$ then

$$
r-\frac{1}{p / q}=\frac{p r-q}{p} \text { and } r-\frac{1}{p / 7^{\prime}}=\frac{p^{\prime} r-q l}{p^{\prime}}
$$

satisfy

$$
\frac{p r-q}{p} \cdot \frac{p^{\prime} r-q^{\prime}}{p^{\prime}}= \pm 1
$$

Proof of lemma 9: assume $r=\frac{p_{1}}{q_{n}}=\left[a_{0}, \ldots, a_{n}\right]$ is negative we have $\frac{p_{0}}{q_{0}}=\frac{a_{0}}{1}$

$$
\frac{p_{1}}{a_{1}}=a_{0}-\frac{1}{a_{1}}=\frac{a_{0} a_{1}-1}{a_{1}}
$$

so

$$
\frac{p_{0}}{q_{0}} \cdot \frac{p_{1}}{q_{1}}=p_{1} q_{0}-p_{0} q_{1}=\left(a_{0} a_{1}-1\right) \cdot 1-a_{0} a_{1}=-1
$$

the exercise above gives

$$
\begin{aligned}
\frac{p_{k+1}}{q_{k+1}} \cdot \frac{p_{k}}{q_{k}} & =p_{k} q_{k+1}-p_{k+1} q_{k} \\
& =p_{k}\left(a_{k+1} q_{k}-q_{k-1}\right)-q_{k}\left(q_{k+1} p_{k}-p_{h-1}\right) \\
& =-p_{k} q_{k-1}+q_{k} p_{k-1}=\frac{p_{k}}{q_{k}} \cdot \frac{p_{k-1}}{q_{k-1}}
\end{aligned}
$$

$\therefore \frac{P_{h+1}}{q_{k+1}} \cdot \frac{p_{k}}{q_{k}}=-1$ for all k
and exenuse above says there is an edge from
$\frac{p_{h+1}}{q_{k+1}}$ to $\frac{p_{k}}{q_{k}}$ and $\frac{p_{k}}{q_{h}}$ anticlockwise of $\frac{p_{k+1}}{q_{k+1}}$ 2.e. $\frac{p^{a}}{q^{a}}=\frac{p_{n-1}}{a_{n-1}}$ is anticlockwise of $\frac{f}{q}$
note: $\frac{a_{n}}{1} \cdot \frac{a_{n}+1}{1}=1$
So exercise above says $\left[a_{n-1}, a_{n}\right] \cdot\left[a_{n-1}, a_{n}+1\right]=1$ and inductively if $\frac{\rho_{q^{c}}^{c}}{c}=\left[a_{0}, \ldots, a_{n-1}, a_{n}+1\right]$ then $\frac{p}{q} \cdot \frac{p^{c}}{q c}=1$
so from above $\frac{p c}{q c}$ clockwise of $\frac{p}{q}$ and hus un edge to it
finally $\frac{p^{a}}{q^{a}}=\left[a_{01}, \ldots, a_{n-1}\right]$ is obtacied from $\frac{p^{c}}{q^{c}}=\left[a_{0}, \ldots, a_{n}+1\right]$
by dropping last entry (if $a_{n} \neq-2$)
So from above there is an edge from $\frac{p^{a}}{q^{a}}$ to $\frac{p^{c}}{q^{c}}$
\therefore we get

easy to see $\frac{A}{q}=\frac{p^{c}+p^{q}}{q^{c}+q^{a}}$
exercise: check $a_{n}=-2$ case
check case $r>0$ and r an integer
given $r=\frac{p}{q}=\left[a_{0}, \ldots, a_{n}\right]<-1$ we will be interested in the shortest path in the Fare graph from $\frac{p}{q}$ to -1
note: $\left[a_{0}, \ldots, a_{n}+1\right]$ is the closest pornt to -1 with an edge to $\frac{p}{q}=\left[a_{0}, \ldots, a_{n}\right]$
since the edge from $\left[a_{0}, \ldots, a_{n-1}\right]$ to $\left[a_{0}, \ldots, a_{n}+1\right]$ "shields" $\frac{p}{q}$ from having an edge to a point outsicle interval $\left[\left\{a_{0}, \ldots, a_{n}+l\right\},\left[a_{0}, \ldots a_{n}\right]\right]$

so if we have a convex torus τ with dividing slope $r=\left[a_{0}, \ldots a_{n}\right]<-1$ and we attach a bypass along a ruling cave of slope -1 (or $s \in\left[-l_{1} 0\right.$)) then the resulting torus will has slope $\left[a_{0,}, \ldots, q_{1}+1\right]$ similarly $\left[a_{0}, \ldots, a_{n}+2\right]$ will be closest point to -1 with edge to $\left[a_{0}, \ldots, a_{n}+1\right]$
continuing we see the shortest path from $\frac{p}{q}$ to -1 is given by

$$
\begin{gathered}
{\left[a_{0}, \ldots a_{n}\right],\left[a_{0}, \ldots, a_{n}+1\right], \ldots\left[a_{0}, a_{1}+1\right], \ldots} \\
{\left[a_{0}+1\right], \ldots,[-2],[-1]}
\end{gathered}
$$

note: this gives $\left|a_{n}+1\right|+\left|a_{n-1}+2\right|+\ldots+\left|a_{1}+2\right|$ edges is the shortest path
given v_{0} and $t \in \mathbb{Q}$ with $t<v_{0}$ and sharing an edge in the Farcy graph we define

$$
v_{k}=v_{k-1} \oplus t \leq v_{0} \oplus k t
$$

we cull the path $v_{0} \ldots v_{k}$ a continued fraction block
exencosé:
show a path v_{0}, \ldots, v_{k} is a contivived fraction block

$$
\Leftrightarrow
$$

there is a change of basis taking it to $-1,-2, \ldots,-k-1$
note:

$$
\begin{aligned}
v_{\left|a_{n}+1\right|} & =\left[a_{0}, \ldots a_{n}\right], \\
v_{\mid a+21} & =\left[a_{0}, \ldots, a_{n}+1\right], \ldots, \\
& \vdots \\
v_{0} & =\left[a_{0}, \ldots a_{n-1},-1\right]=\left[a_{0}, \ldots, a_{n-1}+1\right]
\end{aligned}
$$

is a contrived fraction block since with

$$
v_{0}=\left[a_{0}, \ldots, a_{n}\right] \text { and } t=\left[a_{0}, \ldots, a_{n-1}\right]
$$

example:

$$
\begin{aligned}
& -\frac{41}{41}=[-4,-4,-3],-\frac{26}{7}=[-4,-4,-2],-\frac{11}{3}=[-4,-3] \\
& -\frac{41}{3}=[-4,-3],-\frac{7}{2}=[-4,-2],-3=[-3] \\
& -3=[-3],-2=[-2],-1=[-1]
\end{aligned}
$$

$$
6=|-3+1|+|-4+2|+|-4+2| \text { edger }
$$

3 continued fractor blocks each with 2 edges
example: $-\frac{24}{7}=[-4,-2,-4],-\frac{17}{5}=[-4,-2,-3],-\frac{10}{3}=[-4,-2,-2],-3=[-3]$

$$
-3=[-3],-2=\{-2],-1=[-1]
$$

$5=|-4+1|+|-2+2|+|-4+2|$ edges
2 contrived traction blocks one with 3 edges and one with 2
E. Tight contact structures on $T^{2} \times[0,1], S^{\prime} \times D_{1}^{2}$ and $L(p, q)$
let $T_{\text {hemin }}\left(\tau^{2} \times[0,1] ; S_{0, s},\right)$ be the isotopy classes of minimally twisting tight contact structures on $T^{2} \times[0,1]$ with $T_{i}=T^{2} \times\{0\}$ convex with 2 dividing carver and shoe $\left(\Gamma_{T_{i}}\right)=s_{i}$
recall: minimally twisting means any convertors of in $T^{2} \times[0,1]$ isotopic to the boundary has dividing slope in $\left[S_{0}, S_{1}\right]$
Theorem 10:

$$
\begin{aligned}
& \text { if }-\frac{p}{q}=\left[a_{0}, \ldots, a_{n}\right]<-1, \text { then } \\
& \qquad\left|\operatorname{Tght}_{\text {min }}\left(\tau^{2} \times\{0,1],-p / q,-1\right)\right|=\left|\left(a_{0}+1\right)-\left(a_{n-1}+1\right) a_{n}\right|
\end{aligned}
$$

note: by charging bases this classifies all minimally twisting contact structures on $T^{2} \times[0,1]$
let $P_{s_{0}, s_{1}}$ be a minimal path in the Farcy graph from s_{0} clockwise to S_{1}
we say $P_{s_{0}, s_{1}}$ is a decorated path if each edge has been assigned $a+$ or $a-$
we say two decorations on $P_{s_{0}}$ s. differ by shuffling in continued fraction blocks if each wntinued fraction block contains the same number of t signs (and hence the same number of - signs)

Th m 10 is equivalent to
The II:
$T_{i g h}^{\min }\left(T^{2}+[0,1] ; S_{0}, s_{1}\right)$ is in one-to-one correspondence with decorations on a minimal path in the Farley graph from s_{0} clockwise to s_{1}, up to suffling in continued fration blocks
example:
consider $T_{\text {lIght }}^{\text {min }}\left(T_{x}^{2}[0,1] ; 4 / 15,1\right)$

note: 2 contrived fration blocks one of length 2 and other of length 3
so 3 possible sign configurations for first and 4 " " " second
\therefore we have 12 minimally twisting contact structures

Proof that $T_{1}{ }^{m} 10$ and 11 are equivalent:
Th ${ }^{m} \| \Rightarrow 10$: from last section we know that a minimal path from ${ }^{-} \xi=\left[a_{0}, \ldots, a_{n}\right]$ is given by contrived fraction blocks

$$
\begin{aligned}
& {\left[a_{0}, \ldots a_{n}\right],\left[a_{0}, \ldots, a_{n}+1\right], \ldots\left[a_{0,}, \ldots, a_{n-1},-1\right]=\left[a_{0}, \ldots, a_{n-1}+1\right]} \\
& {\left[a_{0}, \ldots a_{1-1}+1\right],\left[a_{0}, \ldots a_{n-1}+2\right], \ldots\left[a_{0}, \ldots, a_{n-2},-1\right]=\left[a_{0, \ldots}, a_{n-2}+1\right]} \\
& \vdots \\
& {\left[a_{0}+1\right], \ldots[-1]}
\end{aligned}
$$

the first continued fraction block has length $\left|a_{n}+1\right|$ and the rest have leigh $\left|a_{k}+2\right|$
\therefore first has $\left|a_{n}\right|$ sign configurations and rest have $\left|a_{k}+1\right|$ so total number of contact structures is

$$
\left|\left(a_{0}+1\right) \cdots\left(a_{n-1}+1\right) a_{n}\right|
$$

Thㅢㅢ $10 \Rightarrow 11$: exercise: show there is a change of basis taking S_{1} to -1 and S_{0} to a number in $(\infty,-1)$ and this change of basis takes min paths to mini paths and contrived fraction blocks to contrived fraction blocks

If P is a non-minimal decorated path in the Fare y graph then there will be two adjacent edges that can be replaced with a single edge
we say the shortening is consistent if the two edges that are replaced have the same sign
in this case the shortened path is also decorated (just give the new edge the sign of the re moved edge)

consistent
in consistent

Th는:
given $T \in T_{\text {ight min }}\left(T^{2} \times[0,1] ; s_{0}, s_{1}\right)$ and

$$
\}^{\prime} \in T_{\operatorname{cg} h} \min _{\min }\left(\tau^{2} \times\left\{0_{1} 1\right\}_{1} s_{1}, s_{2}\right)
$$

corresponding to the decorated minimal paths $P_{1} P^{\prime}$ if $s_{2} \&\left[s_{0}, s_{1}\right]$, then the result of gluing $?$ and $\}^{\prime}$ together on the torus of slope s_{1} will be a tight mincumally twisting con tact structure

$$
\Leftrightarrow
$$

Pup' can be consistently shortened to a Minimal path
we end the discussion of contact structures on $T^{2} \times[0,1]$ with a useful lemma
lemon 13:
given $\} \in \operatorname{Tightain}_{\min }\left(T^{2} \times\{0,1\} ; s_{0}, s_{1}\right)$
then there is a convex tor vs is topic to the bounden with slope $s \Leftrightarrow s \in\left[s_{0}, s_{1}\right]$
we would now like to discuss solid tori for this we set up some notation given any slope $s \in \mathbb{Q}^{*}$
let $S_{s}=\tau^{2} \times[0,1] / \sim$
where \sim collapses the leaves of the linear foliation on $\tau^{2} \times\{0\}$ of slope s
exencisé: S_{s} is a solid torus
Hist: $\cdot T^{2} \times[0,1] \cong A \times s^{1}$ where A is an annulus given by a slope S curve on T^{2} times $[0,1]$

- collapsing on boundary component of A g ives D^{2}
We say S_{s} is the solid torus with bowen meridian S Similarly $S^{S}=T^{2} \times[0,1] / \sim$
where \sim collapses the leaves of the linear foliation on $\tau^{2} \times\{1\}$ of slope s

We say S^{s} is the solid torus with upper menidican S note: S_{∞} is what is normally called a solid torus $S^{\prime} \times D^{2}$

Th $\mathrm{m} / 4$:

$$
\begin{aligned}
\text { if }-P / q= & {\left[a_{0}, \ldots, a_{n}\right]<-1 \text {, then } } \\
& \left|\operatorname{Tght}\left(s_{j}^{0}-p / q\right)\right|=\left|\left(a_{0}+1\right) \ldots\left(a_{n-1}+1\right) a_{n}\right|
\end{aligned}
$$

exencisé: Show $\left|\operatorname{Tight}\left(S_{\infty} ; r\right)\right|=\left|\operatorname{Tight}\left(S^{0} ; \frac{1}{r}\right)\right|$
hint: consider $f: T^{2} \times[0,1] \rightarrow T^{2} \times[0,1]$

$$
(\theta, \phi, t) \longmapsto(\phi, \theta, 1-t)
$$

a minimal path P is (upper) mostly decorated if all
edges but the last one hare a sign and last edge has a 0
it's (lower) mostly decorated if as above but first edge has a O
th ㅆ/4 is equivalent to
The 15:
let P be a minimal path from r clockwise to s Tight $\left(S^{s} ; r\right)$ is in one-to-one correspondence with (upper) mostly decorations on P upto shuffling signs in continued fraction blocks
Tight $\left(S_{r} ; s\right)$ is the same but use (lower) mostly decorated paths
exercise:
Show $T^{m} 14$ and 15 are equivalent (very similar to equivalence of 7 h m 10 and 11
Th 16:
given $T \in T_{\text {ight }}\left(S^{m} ; S_{0}\right)$ and

$$
\xi^{\prime} \in T_{\operatorname{cg} h_{\min }}\left(T^{2} \times[0.1] ; s_{0}, s_{1}\right)
$$

corresponding to the upper mostly decorated muismal path P and decorated path P^{\prime}
Then the result of gluing ?, 3' together along the tori with dividing slope s_{0} is tight

$$
\Leftrightarrow
$$

$s_{1} \in\left[s_{0}, m\right]$ and Pu ρ^{\prime} can be consistently shortened to a minimal upper mostly decorated path
here it one of the edges in the shorting is cabled 0 the shortening is consistent and new edge is tabled 0
example:
solid
torus

shorten at $-1 / 2$ consiston for both \pm

shortest path so tight
note: If K is a knot in M then a standard ubhd N of K is S_{∞} and doing r Dehn surgery is the result of removing $N=S_{\infty}$ from M and gluing in $S^{\prime} \times D^{2}$ so the mention goes to the slope r curve on $\partial(M-N)$.
this is the same as replacing S_{∞} with S_{r}
If U is the unknot in S^{3}, then S^{3} - abd $(0)=5^{0}$

$$
\therefore L(p, q)=S^{0} \cup S_{-p / q}
$$

that is $L(p, q)=T^{2} \times[0,1] / \sim$
where ~ collapses the leaurs of the linear foliations on $\tau^{2} \times\{0\}$ of slope $-\frac{p}{q}$ and the leaves of the linear foliation on $T^{2} x\{1\}$ of slope 0

Th ${ }^{\text {m }} 17$:

$$
\begin{aligned}
& |\operatorname{Tight}(L(p, q))|=\left|\left(a_{0}+1\right) \ldots\left(a_{n}+1\right)\right| \\
& \text { where }-\rho / q=\left[a_{0}, \ldots, a_{n}\right]
\end{aligned}
$$

the main theorems ($T 4^{3} 10,14,17$) will follow from
lemma 18:

$$
\begin{gathered}
\left|\operatorname{Tight}_{\text {min }}\left(\tau^{2} \times[0,1], p / q_{1}-1\right)\right| \leq\left|\left(a_{0}+1\right) \ldots\left(a_{n-1}+1\right) a_{n}\right| \\
\text { where }-p_{1 q}=\left[a_{0}, \ldots, a_{n}\right]<-1
\end{gathered}
$$

lemma 19:

$$
\begin{aligned}
& \text { if } \frac{f}{\xi}=\left[a_{0}, \ldots, a_{n}\right]<-1 \text { and } \frac{p^{\prime}}{q^{\prime}}=\left[a_{0,}, \ldots, a_{n}-1\right] \text {, then } \\
& \qquad\left|\operatorname{Tight}\left(L\left(p_{,}^{\prime}, q^{\prime}\right)\right)\right| \leq\left|\operatorname{Tg} h+\left(S_{j}^{0}-p / q\right)\right| \leq\left|\operatorname{Tgh} t_{\min }\left(\tau^{2} \times[0,1] ;-p / q,-1\right)\right|
\end{aligned}
$$

Proof of $T_{n}{ }^{m}$ s $10,14,17$:
by constructing Stein fillings of lens spaces in lemma I. 2 says

$$
\left|\left(a_{0}+1\right) \ldots\left(a_{n-1}+1\right) a_{n}\right| \leq\left|\tau_{i g} h_{t}\left(L\left(p^{\prime}, q^{\prime}\right)\right)\right|
$$

this and lemmas $18,19 \Rightarrow$ all contact manifolds under consideration have $\left|\left(a_{0}+1\right) \ldots\left(a_{n-1}+1\right) a_{n}\right|$ tight structures upto isotory!

Proof of lemma 19:
given $\} \in T_{\text {light }}\left(5^{0} ; p / q\right)$
we can Legendrian realize $S^{\prime} \times p t$ in $S^{\prime} \times D^{2}=5^{\circ}$
let $N=$ stol ubhd of this Legendrion
so $\left|\Gamma_{\partial M}\right|=2$ and slope $\Gamma_{\partial v}$ is longitudinal recall this means a curve in $\Gamma_{\partial N}$ and meridian intersect one time, ie. edge in fare y graph
so slope $P_{\partial N}=\frac{1}{n}$

exercise: by stabilizing we can assume $\frac{1}{n}$ is negative
note: $\overline{S^{0}-N}=T^{2} \times[0,1]$ and $\left\{\left.\right|_{T^{2} \times[0,1]}\right.$ is minimally twisting
exercise: prove this
so $\left.3\right|_{\left.\tau^{2} \times \sum 0,1\right]}$ given by
(we prove this and lemmal3 when we prove lemma 18)

so le mama 13 says \exists convex tors $T \subset T^{2} \times[0,1]$ isotopic to the boundary with dividing slope -1
let $N^{\prime}=$ solid torus T bounds
now Kanda's $\pi_{1} \underline{m}, \pi T_{1}$ VIII. 5 says $\prod_{N^{\prime}}$ is unique and ${ }^{1} \overline{S^{0}-N^{\prime}}$ is an elf of $T_{\text {right }}$ min $\left(T^{2} \times[0.1] ; \rho_{9},-1\right)$

$$
\therefore\left|T_{c g} \ln \left(S^{0} ;-P / q\right)\right| \leq\left|\tau_{\text {cg ht }} \min \left(T^{2} \times[0,1]_{j}-P / q,-1\right)\right|
$$

now given $\} \in \operatorname{Tight}\left(L\left(p^{\prime}, g^{\prime}\right)\right)$ we can think of

$$
L\left(p^{\prime}, q^{\prime}\right)=S^{0} \cup S_{-p^{\prime} / q^{\prime}}
$$

let $K=$ core of $S_{-p^{\prime} / q^{\prime}}$ and $C=$ Lore of S° we can Legendrion relite them as L, L^{\prime}, respectively as above a stondard ubhd N^{\prime} of C^{\prime} has slope $\frac{1}{n}$ a stael ubhd N of L has dividing slope r with an edge to ${ }^{-\rho^{\prime}} / q^{\prime}$ and by stabilizing we can assume r is as close to ${ }^{-P \prime \prime}$ as we like

now $\overline{L(\beta 9)-\left(N \cup N^{\prime}\right)}=T^{2}+[0,1]$ and $\left.3\right|_{\tau^{2} \times[0,1]}$ minimally twisting so given by So \exists a convex torus T in $T^{2} \times[0,1]$ parallel to the boundary with dividing slope $-\frac{p}{q} q$

let $S=$ solid tors T bounds with meridian of slope $-p^{\prime} / q^{\prime}$ by Th's IIII. 5 we know I_{S} is unique and
$\left.3\right|_{[(R C)-S}$ is a tight str on 5° with dividing slope $-P_{q}$

$$
\therefore\left|T_{1 g h t}\left(L\left(p_{1}^{\prime} q^{\prime}\right)\right)\right| \leq\left|T_{\lg h t}\left(S_{j}^{0}-p_{q}\right)\right|
$$

Proof of lemma 18
given $\} \in T_{\text {iq }} \operatorname{htmin}_{\min }\left(T^{2} \times[0,1],-p / q,-1\right)$ where $-\frac{p}{q}=\left[a_{0}, \ldots, a_{n}\right]<-1$ let $\Gamma_{1}=$ dividing curves on $T^{2} \times\{i\}$
assume $\partial\left(T^{2} \times[0,1]\right)$ has ruling curves of slope 0 let $A=S^{\prime} \times[0,1]$ be an annulus $s t . S^{\prime} \times\{i\}$ is a ruling
curve on $\tau^{2} \times\{i\}$
note $\operatorname{tr}\left(S^{\prime} \times\{0\}, A\right)=-\frac{1}{2}\left(\left(S^{\prime} \times\{0\}\right) \cap \Gamma_{0}\right)=-p$

$$
\operatorname{to}\left(S^{\prime} \times\{1\}, A\right)=-\frac{1}{2}\left(\left(S^{\prime} \times\{1\}\right) \cap \Gamma_{1}\right)=-1
$$

so we can make A convex and Γ_{A} is

So we must see

we can now use Giaour flexiblility to see a bypass on A we can attach to the front side of $T^{2} \times\{0\}$
let T^{\prime} be the result of attaching the bypass so T^{\prime} splits $T^{2} \times[0,1]$ in +0 $\left(T^{2} \times[0,1 / 2]\right) \cup\left(T^{2}+\left[y_{2}, 1\right]\right)$
from Corollary 8 and our discussion in the last section we see T^{\prime} has 2 dividing curves of slope $-p^{\prime} / q_{1}=\left[a_{0}, \ldots, a_{n}+1\right]$
so $T^{2} \times[0,1 / 2]$ is a basic slice with sops P / q and P / q,

$$
\text { and } T^{2} \times[1 / 2,1] \in T_{i g} \operatorname{lt} t_{\min }\left(T^{2} \times I_{;}-P_{q^{1}}^{1},-1\right)
$$

continuing we can split ($\left.\left.T^{2} \times[0,1],\right\}\right)$ into basic slices along tori of slopes

$$
\begin{aligned}
& {\left[a_{0}, \ldots a_{n}\right],\left[a_{0}, \ldots, a_{n}+1\right], \ldots\left[a_{0}, \ldots, a_{n-1},-1\right]=\left[a_{0}, \ldots, a_{n-1}+1\right]} \\
& {\left[a_{0}, \ldots a_{1-1}+1\right],\left[a_{0,} \ldots a_{n-1}+2\right], \ldots\left[a_{0}, \ldots, a_{n-2},-1\right]=\left[a_{0, \ldots}, a_{n-2}+1\right]} \\
& \vdots \\
& {\left[a_{0}+1\right], \ldots[-1]}
\end{aligned}
$$

each basic slice has 2 possible contact structures thus every $\} \in T_{i g h} t_{\min }\left(\tau^{2} \times[0,1] ;-P / q,-1\right)$ is obtaried by concatenating basic slices as above
that is, it is given by a decor ated minimal path in the Farcy graph from ${ }^{-p / q}$ to -1
so if we see we can shuffle signs in a continued fraction block then the proof will be complete as discussed in the proof of the equivalence of T_{h} m 10 and 11 we consider a single continued fraction block and after changing basis we can assume the slopes of the 2 basic slices are $-n-1,-n,-n+1$
we assume the basic slices have opposite signs (otherwise there is nothing to prove)
the 2 possibilities for A are
non-nested bypasses

\vdots	
-	
-	+
-	
\vdots	

on nested bypasses

	\vdots
-	
7	+
-	
	\vdots

in the first case we can clearly attach the bypasses in any order, ne. we can shuffle in the second case we isotop A like in proof of $T_{\mathrm{H}} \mathrm{I} 1$

So we" add copies" of torus of slope $-n-1$ and $-n$ to A to get

(we didn't draw -n-1 torus as it can't affect nesting)
\therefore we can attach bypasses in any order and hence shuffle signs!
lemma 13 was about realizing slopes by $\tau^{2} \subset\left(\tau^{2} \times[0,1], 1\right)$
Proof of lemma 13:
If $\left(T^{2} \times\left\{0_{1} 1\right], 3\right)$ is a basic slice with dividing slopes s_{0}, s, then for any $s \in\left[s_{0}, s,\right]$ there is a convex torus T with slope s (and 2 dividing curves) in $\tau^{2} \times[0,1]$ and is otopic to the boundary
exenuse: check this lit follows from the construction of 3)
since any $\} \in \operatorname{Tight}_{\min }-\left(T^{2} \times[0,1] ; P_{g},-1\right)$ is a Concatenation of basic slices with slopes going from P / g to -1 we are done

Proof of T^{3}, 12 : about gluing contact stars on $T^{2} \times[0,1]$
suppose we do a consistent shortening
we start by considering a basic slice with slope -2 and -1 by exercise above, in proof of lemmal3, we see \exists a convex torus of slope $-3 / 2$ that splits $T^{2} \times[0,1]$ into $T^{2} \times[0,1 / 2]$ and $T^{2} \times[1 / 2,1]$ and each of these is a basic slice you can see from the relative Euler class computation in Th'm I that the sign of the basic slices must be the same \therefore we see if we can do a consistent shortening we get a tight basic slice and if we can do consistent shortening to get a minnisal path with decorations the it must be tight by $T^{\underline{m}} \|$

Suppose we do an inconscitent shortening, after a change of basis, we cans assume the first basic slice has slopes -2 and $-3 / 2$ while the second has $-3 / 2$ to -1
so $T^{2} \times[0,2]=\left(T^{2} \times[0,1]\right) \cup\left(T^{2} \times[1,2]\right)$ where $\Gamma_{i}=\Gamma_{T^{2} \times\{i 3}$ has slope $-2,-3 / 2,-1$ for $1=0,1,2$, respectively
assume the ruling slope on all the $T^{2} \times\{i\}$ have slope ∞
let $A_{1}=S^{\prime} \times[0,1]$ and $A_{2}=S^{\prime} \times[1,2]$ be slope so annuli with boundary ruling curves
we see, aftrimaking convert, that $\Gamma_{A_{1}}$ and $\Gamma_{A_{2}}$ can be

${ }{ }_{\text {unto changing orientation on }} A_{i}$ can assume this we cant have A_{2} being

since then $A_{1} \cup A_{2}$ would be

and we could use Giroux flexibility to arrange a wo of slope so that would imply $\tau^{2} \times[0,1]$ was not misinially twisting, but from above we saw a consistant shortening always gives a basic slice (is mu. twisting) in case (2) above we see

So Ginoux criterion implies this is oventwisted
the other case must be tight from above
Proof of $\pi^{\text {T }} 16$:
let $\} \in \operatorname{Tight}\left(s^{0} ;-1\right)$ note: $\}$ is unique! by Th "IIII. $5^{\text {m }}$ from the construction of 3 in T M IIII. 5 we see there is a convex torus T isotopic to ∂S° with 2 dividing curves of slope $-1 / 2$
T spluts $\left(S^{0}, 3\right)$ in to the unique element in $\operatorname{Tight}\left(S_{i}^{0}-4 / 2\right)$ and one of 2 elements in $T_{i g h t}\left(\tau^{2} \times[0,1] ;-1,-1 / 2\right)$ by reversing oriëntation on 3 we can assume this basic slice has any sigu!
thus shortening a path -1 to $-1 / 2$ to 0 with a \pm on the first edge and a 0 on second must be tight.
exencise: finish the proof of the theorem
(essentially same as proof above after above observation)

